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THE UPPER ATMOSPHERE AS A
MULTIPLE REFRACTIVE MEDIUM

FOR NEUTRAL AIR MOTIONS

H. Volland

ABSTRACT

Under the influence of gravity and heat conduction four plane characteristic
waves obliquely incident on a horizontally stratified atmosphere can propagate,
two of them upward and the two other downward. The two pairs of character-
istic waves are the well known acoustic-gravity waves and the heat conduction
waves. Molecular viscosity generates two further pairs of characteristic waves,
the ordinary and the extraordinary viscosity waves. Ion drag and Coriolis force
make the atmosphere anisotropic with respect to the characteristic waves.
Their propagation characteristics for east to west and north to south propaga-
tion differ from each other.

Some analytical solutions of the eigenvalues of these eight characteristic
waves are given in this paper. Numerical calculations of the eigenvalues de-
pending on the parameters of the thermosphere, on frequency, azimuth and on
angle of incidence are presented and discussed in some detail.
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THE UPPER ATMOSPHERE AS A
MULTIPLE REFRACTIVE MEDIUM

FOR NEUTRAL AIR MOTIONS

I. INTRODUCTION

Since the work of Harris and Priester (1962) and of Hines (1960) it is well
established that neutral air waves propagate within the thermosphere driven
either by the solar EUV heat input within the thermosphere or originating in the
lower atmosphere and propagating upward into the thermosphere. The paper of
Harris and Priester stressed the importance of heat conductivity for the propa-
gation characteristics of the diurnal waves. This is due to the fact that the ratio

K/ p
(« = coefficient of heat conductivity; p = mean density) is increasing with height
because « depends only on temperature while o decreases exponentially with
altitude. The change in the propagation behavior of gravity waves due to heat
conduction and viscosity has been shown by Pitteway and Hines (1963). They
calculated the eigenvalues of plane harmonic gravity waves and discussed the
energy dissipation of these waves due to heat conduction and viscosity. Midgley
and Liemohn (1966) made a full wave calculation of neutral atmospheric waves
below 160 km altitude taking into account heat conduction and viscosity. They
used a numevrical technique to suppress the evanescent heat conduction waves
and viscosity waves and calculated reflection coefficients of the lower atmos-.
phere with respect to gravity waves.

More recent observations of traveling ionospheric disturbances (TID) made
by Thome (1964) and Georges (1967) and observations of wave like structure in
the thermospheric neutral density by Newton et al. (1968) show that gravity waves
can reach altitudes as high as 500 km. At these heights however heat conduction
waves and viscosity waves are no longer evanescent waves compared with gravity
waves and may play a more or less important role.

In order to deal with either the ray treatment or the full wave treatment of
atmospheric waves one has to know the eigenvalues of the different wave modes.
In this paper analytical and numerical calculations of the dispersion equation
valid at thermospheric heights will be presented. For convenience we restrict
ourselves to the simplest type of waves, namely plane harmonic nonducted



neutral atmospheric waves propagating obliquely through a horizontally stratified
quiet atmosphere under the influence of heat conduction, viscosity, ion drag and
Coriolis force. Under those conditions four pairs of characteristic waves exist:

a. Acoustic-gravity waves

b. Heat conduction waves

c¢. Ordinary viscosity waves

d. Extraordinary viscosity waves.

Characteristic waves are only well defined within a homogeneous medium.

The atmosphere however behaves like an inhomogeneous medium with respect to

neutral air waves because the eigenvalues of the characteristic waves are func-
tions of

(1)

'c|]x
clIE

x
il

coefficient of heat conductivity

]

7 = coefficient of viscosity

H

p = mean pressure

This leads to the construction of a model atmosphere consisting of a number
of homogeneous slabs of constant temperature and constant parameters «/p and
n/p. In each of these slabs the eight characteristic waves propagate uncoupled

from each other. Coupling then occurs only at the boundary between adjacent
slabs with different parameters.

In this paper we shall solve the eigenvalue equation of the characteristic
waves analytically and numerically within one homogeneous slab. We shall dis~
cuss the behavior of the eigenvalues of the different wave modes as functions of
angle of incidence, frequency and thermospheric parameters. The validity of
such model atmosphere in full wave and ray treatments has been demonstrated
in an additional paper (Volland, 1968).



II. THE BASIC EQUATIONS

We start from the equations of conservation of mass, momentum and energy
and the ideal gas equation of the neutral gas which are

~ ;a_/o_{, di o = 0
at v (/OV)

dv L =, -
p'd—t'+divo+vp(V'-vi)—2QX vo tgradp — pg ~ O

(2)

-3 -

dT - v
C, gy tpdivvt f-divikgrad T) + vpov - (V- v;) = 0

p-wupT = 0.

o density; v = (u, v, w) velocity
p pressure; T temperature
v collision frequency between ions and one molecule

o viscous stress tensor

avi ka 9
+ -a—-x—i-— 38 . div v > element of o

i T 7

i

8xk

7 coefficient of molecular viscosity

(1 earth's rotational vector

ol

gravitational acceleration force

c, specific heat at constant volume



ion velocity parallel to the geomagnetic field ﬁo‘

Bvi
A = 2 :2 :Uik 3 x,
i k

viscosity heating

« coefficient of heat conductivity
uw = R/M

§ gas constant

M molecular weight

For solving the system of Equations (2) a consequent perturbation method is
applied assuming that the time independent mean values like density 7, pressure
p and temperature T are already known and that the mean velocity of the air v

is zero. The perturbation is considered to be a plane harmonic nonducted wave
of angular frequency « and of wave number k obliquely incident on a horizontally
stratified plane atmosphere in which all paramecters depend only on the vertical
component z. Then all variables are functions of the coordinates x, y, z, and
time t according to

f(z) ei®@t™ik sin 8 (x cos A+ y sin A) (3)

6 is the angle of incidence and A is the azimuth of the plane of incidence of the
wave with respect to geographic south. We assume that no internal energy
source exists.

The vertical component of energy transported by the different wave modes
is continuous at any internal boundary. This implies the equivalence to Snell's
law:

[H

k sin 68 const.

(4)

A = const.




We normalize wavenumber k by an arbitrary constant wavenumber

k, = — (5)
D e— . 9]
4] CO

~ where
C = VYruT, (6)

is the acoustic phase velocity at an arbitrary height z,. Since we exclude ducted
wave modes, our model atmosphere is extended infinitely in vertical direction.
Thus the normalized horizontal wavenumbers

kx
K = So Ccos /\O
0
k
y o S oA
———ko o Sin Ay

can have all possible real values and remain constant throughout the whole at-
mosphere.

For convenience we rotate the coordinate system in such a manner that the
new x-axis points in the A, direction. Then the horizontal components of the
velocity with respect to the new coordinate system are

4

~
u u cos /\0+vsin /\0

<¢
|

-usm/\0+vcosA0

The values Au, Av, Aw, Op, Dp and AT are the deviations from the mean values
and are considered to be small compared with C;, p (z), 0 () and T(z) of the
quiet atmosphere. Thus all products of these small values can be neglected.
We normalize these variables according to



(8)

_ Ap kAT _ Au' - Av'
ez'_g;elt_coﬁ;es'j;ei? w

The derivative with respect to z has been replaced by a prime (9/3z = ').

Introducing the expressions of Equation (8) into the system of Equations (2)
and considering the time and spatial dependence of Equation (3) the variables Aw"
and Ap can be eliminated which leads to a system of first order diffcrential
equations which in concise matrix form is

e ~ jk, Ke = 0, (9)

where

is the column matrix containing the 8 independent variables defined in Equa-
tion (8). The coefficient matrix

K = (10)

has the submatrices



/ -2jA, -1 1 0

: . 2iGs
"y(1-8D)d; 2 (A -A)S -2j(A-Ay5) -
2
. 2;G
0 0 2j (A-A) - a,
i8¢
-2jd, A1—7> -1 d, {1~ 2i A
S 0 0
3 38,8j 3R6B,d,
) 2A180-j - 3A2503 +ZRB1d1) - 4 - P

~jRB;d, 0 0 o0




0 -j 0
Rd,(1-jB,)-jSg -2jA, jRB¢d,
K, =
0 0 0
-jRBgd,; 0 Rd,(1-jBg)-jS{

Here the following abbreviations have been used:

ko = -C:‘ CO
]/kx2+ky2
S0 = —‘*‘“1;:— C
1
A = 2k, H H =
1
Ay = 2k H, e~
1
T Hy =
ACO
G = V v =
d, = C02 d, =
1 c? 2
_ CP _
Y T < R =

’)/,u,i'/ -

z=2zg

-2jA



8 = 1 . Z = _2_Q Z - _V_
- 3iRTTT e 2w
4y
RZ 2A;
3 2 1 /3 1
- 2 2 — [ 2c2_ 2 -
D 1+4 > cos“ I + d17<4so 4Al + 4A1A2 I, )
Bl
= Zl sin J sin A, Z2 sin I cos I cos A,
B
2
B3
= Z1 sin 9 cos Ay * Z, sin I cos I sin A,
B
4
BS
= Z cos ¥+ Z, cos? I cos Ay sin A,
By
B, cos? /\0
= Z2 1 - cos?1
12
B, sin Ao
sin ¢ ) 2 cos O
cos I = ; sin I =
1+ 3 cos2d V 1+ 3cos2

J geographical co-latitude
I geomagnetic dipangle
A, azimuth

In this calculation the geomagnetic field has been approximated by a dipole
field with its axis parallel to the earth's rotational axis. Moreover, the derivative




of 1 with respect to z has been neglected. But we have allowed for an altitude
dependence of 7, §, 1 dnd «.

For comparison with earlier works (e.g., Hines, 1960; Eckart, 1960) we
notice the following characteristic frequencies:

w, = _’}’_(g: = \’dl Aw

2
W = 2Ny- 1 (Brunt-Viisili (11)
a
& v Frequency)
_ Y& _
W T Gy T d; Gow

Frequency w, is the critical frequency of gravity waves in a loss free iso-
thermal atmosphere. w, isa stability parameter for small scale dynamics.
w, is a measure of the dissipation of wave energy due to heat conduction. The
parameter V in «, has the dimension of a velocity and can be interpreted as the
velocity of vertical heat transport within a static atmosphere in which the ratio
x/P remains constant (Volland, 1967).

The parameters R and G are proportional to each other:

R = —:)/—G (12)

with

(Chapman and Cowling, 1959), indicating the inherent relationship between heat
conduction and viscosity. R can be interpreted as some kind of Reynolds number
because for acoustic waves the ratio between acceleration force and viscosity
force in the equation of momentum is

10



v
P 3t

Pw -
- ’\1_2
7)AV 'r}ko
If we take into account a mean horizontal velocity of the air with components
(u, v) then we only have to replace angular frequency « by an effective frequency

_ =
Wegg = @~ kg Syu

where U is the component of mean velocity in the Aj-direction of wave propaga-
tion as can be derived from Equation (7).

III. THE CHARACTERISTIC WAVES

In order to solve Equation (9) uniquely it is necessary to know the conditions
at the lower or the upper boundary of the model atmosphere. Physically appro-
priate solutions require separation between waves transporting energy upward
and waves transporting energy downward. Such waves are the characteristic
waves or wave modes. We find them by transforming the matrix of the physical
parameters e in Equation (9)

e = Pc (13)
where the column matrix
4
a4,
c - (14)
b,
b

4

contains four upgoing waves a, and four downgoing waves b, . Introducing
Equation (13) into Equation (9) gives

¢ = jk,Ne - P1P ¢ (15)

P in Equation (13) has to be chosen in such a manner that the matrix

11



AN
N
N
0, \\ N
N N N
. \\ N \\ .
N
N = P“lKP = . \\—/\i \\ . (16)
. \ \\ N\
N
N AY \\
AN \\ 0
\
0 . 0 A

in Equation (15) is a diagonal matrix. The elements A, in N are the eigenvalues
of K defined by the eigenvalue equation

‘K+>\i\E':0 (17)

(E unit matrix).

Within a homogeneous medium in which the elements of K and P are con-
stant the characteristic waves now have the solutions

o, e'.iko Ai (27 20) (18)

and are independent of each other. However, the parameters G, R and Z,
in K are altitude dependent even within an isothermal atmosphere. The atmos-
phere therefore behaves like an inhomogeneous medium with respect to neutral
air waves. The matrices K and P are functions of height. The matrix P~ P’
in Equation (15) therefore couples the different characteristic waves with each
other at any height.

If this coupling is weak, such that the elements of P"!P' are small com-
pared with A, an approximate solution of Equation (15) is

'kszﬁd
c"‘coe")zo (£)d¢

12



or

z
“jk )\i f df
Co, © j osz €] (19)

This is the ray solution of Equation (9) (e.g., Budden, 1961). It means that the
characteristic waves propagate uncoupled from each other through the inhomo-
geneous atmosphere and that their amplitude and phase behavior is governed
only by their eigenvalues A, in the phase integral.

The WKB solution as a second order approximation is defined by a special
normalization of the elements of P such that the matrix P"!P' has only zero
elements in its diagonal. As a consequence the amplitude factors cy; in Equa-
tion (19) become height dependent.

It can be shown by a numerical full wave treatment of Equation (9) that
Equation (19) is in fact an excellent approximation at least for ascending gravity
waves in thermospheric heights (Volland, 1968).

IV. THE ISOTHERMAL MODEL ATMOSPHERE

In view of the important role of the eigenvalues in any wave treatment our
main task in this paper is to find analytical and numerical solutions of the eigen-
value Equation (17). Special analytical solutions have the advantage that they
allow a qualitative discussion of the behavior of the characteristic waves and
that they help to identify the various wave modes in numerical treatments of the
eigenvalue problem.

For convenience we confine ourselves to an isothermal atmosphere. This
has the advantage that it substantially simplifies the eigenvalue Equation (17).
Moreover it leads to the classical formula of Hines (1960) for an adiabatic atmos-
phere (« = n = v = 0). This assumption is not really a restriction because in
numerical full wave treatments one generally approximates the realistic atmos-
phere by a number of isothermal slabs (e.g., Midgley and Liehmon, 1966; Volland,
1968). A thickness of 1 km per slab is in most cases a sufficient approximation.
In a ray treatment like Equation (19) a change in temperature can be taken into
account by a height dependent parameter A(z).

13



A characteristic wave defined in the foregoing section is completely
uncoupled from the other characteristic waves within one slab if the parameters
of the coefficient matrix K are constant [see Equation (18)]. Then coupling
takes place only at the boundaries to the adjacent slabs which have other parame-
ters. If the slab is isothermal with exponentially decreasing pressure and
density it follows from the definitions of G, R and Z, that the ratios

and

'cllx
ol |3
I

must be kept constant within the slab. This involves a constant collision fre-
quency v and an exponential decrease of « and 7 with height such that

A2 = A1 = A = const.
2f

R = — G = const.
Y

d =1

Our model atmosphere therefore has an altitude dependence of the physical
parameters as shown in Figure 1. In order to meet the dynamic boundary con-
dition in hydrodynamics the pressure p(z ) must be continuous at the boundary
between two adjacent slabs with different temperatures T and T ,, .

A more realistic model of the atmosphere could be found by approximating
the real temperature profile within one slab by an exponential law

1

B .

= const.

!

This would lead to continuous pressure, density and temperature values at the
boundaries and an « ~dependence like 5. It would greatly increase however the
difficulties in solving Equation (17) and gives no real improvement in numerical
calculations.

The profiles shown in Figure 1 approach realistic atmospheric profiles if
the thickness Az of the slabs is sufficiently small. Numerical full wave and

14
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ray optics calculations completely justify this kind of approximation including
even the strange zigzag profiles of the coefficients of heat conduction « and
viscosity n (Volland, 1968).

V. EIGENVALUES OF AN ISOTHERMAL ATMOSPHERE
From the theory of gravity waves within an isothermal nondissipative at-

mosphere it is well known (Hines, 1960) that an upgoing wave increases its
amplitude like

e z/2H (20)

in order to keep the wave energy constant in an atmosphere where the pressure
decreases exponentially with height. In a dissipative atmosphere the amplitude

of a wave cannot surpass the amplitude of the equivalent nondissipative wave
because part of the wave energy is transferred into internal energy of the sur-
rounding gas by heat conduction, viscosity or collisions with the plasma com-
ponent.* We therefore split from the eigenvalue A, a positive imaginary part jA:

N, T q +jA (21)

1

which describes the amplification of the amplitude as shown in Equation (20).

The remaining term q,, which we shall refer to as the eigenvalue, is com-
plex:

q = o - B (22)

Here the real part o, is a measure of phase velocity v,

Vv | = = (23)

(n; = real refractive index)

*This transfer of energy is a nonlinear process which is not included in our linearized theory.

16



and of the vertical component of group velocity

CO
Vgl I (wa;) da; (24)

EPIERIEY)

The angle between the vertical and the phase velocity is

6 | = arc tg (25)

while the angle between the vertical and the direction of the group velocity within
the (a,, Sy) — plane is defined as

9 a.
1

egli = - arc tgaso (26)

The imaginary part - j S, is responsible for the dissipation of wave energy. We
define as upgoing or downgoing waves

[\

B, 0  (upgoing)
(27)
B

A

0 (downgoing)

where the equal signs only stand for nondissipative waves (« = n = v = 0).

VI. CLASSIFICATION OF THE CHARACTERISTIC WAVES
IN AN ISOTHERMAL ATMOSPHERE

In this section we shall solve the eigenvalue Equation (17) analytically
for some very special cases in an isothermal atmosphere. We shall define
the different characteristic waves — or wave modes. As follows immedi-
ately from the kind and number of the system of differential Equations (9)
there exist four pairs of wave modes, each pair consisting of an upgoing

17



and a downgoing wave. These four wave pairs are
Acoustic-gravity waves (q;, q,)
Heat conduction waves (q,, q,)
Ordinary viscosity waves (qg, qg)
Extraordinary viscosity waves (q,, qg)
In general all eight eigenvalues q, are different from each other showing

that waves helonging to one pair may have different propagation characteristics.
In our special analytical solutions we shall find pairs of eigenvalues which only

differ in sign (e.g., q; = -q,» etc.).

a. Extraordinary Viscosity Waves

We start with the extraordinary viscosity mode because this mode can be
easily separated from the other modes. From the eigenvalue Equation (17) it
can be seen that this wave mode is coupled with the other waves only through
Coriolis force and (or) ion collisions. If Z;, Z, are small compared with 1
the parameters B, in K are small and can be neglected. Then the eigenvalue
Equation (17) has the form

Kg + A, E 0
=0 (28)
0 Ko + A, E
with
: So 0
‘ -3
K, + A, E L OAS G 7 Se b
L0 0
Ks + N E = 0 0
__________________ |
0 0 o 0 A ~j



and

Kg + A, E = (30)

R - jS? N, - 25A

Now the eigenvalue equation can be separated into two determinants:

IKg + 2, E|l - |k, + N E] = 0
which implies:
K, + 0 E] = 0 (31)
K + N E] = 0 (32)

The solution of Equation (32) is

oA = g = FYAT . SE 4R (33)
8

q; are the eigenvalues of the pair of extraordinary viscosity waves. The upper
sign in Equation (33) stands for the ascending wave, the lower sign stands for the
descending wave as one can check immediately from the definitions given in
Equations (27). This wave mode is a purely transverse wave inasmuch as only
the horizontal component Ay orthogonal to the direction of wave propagation is
involved. It is heavily attenuated for large values of R and becomes a purely
evanescent wave at R = 0.

Equation (33) is also exact for east-west propagation (A; = +90°) at the

equator (¢ = 90°) even for arbitrary values of Z, and Z,. In this case the wave
is likewise completely uncoupled from the other waves.

19



From Equations (23) and (24) we derive phase and group velocity at vertical

incidence as

2C A

Ve ~ 9

2V
P

.

for <

A << R

A >> R
for <
A << R

-

Phase and group velocity have the same direction.

b. Ordinary Viscosity Waves

(34)

The remaining Equation (31) can similarly be separated for vertical inci-
dence S, = 0. Then Equation (31) becomes

K, + A El =

K, + \,E 0

K, £ 0 E

K, looks exactly like K in Equation (32) for S; = 0 and gives the eigenvalues of

the pair of ordinary viscosity waves

20
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which have the same behavior as the eigenvalues of the extraordinary viscosity
waves.

c. Acoustic-Gravity Waves and Heat Conduction Waves

The eigenvalues of the remaining matrix K, in Equation (35) can be found
for 5, = 0 as

\
q,
2
- ) ] 4GR*
= Tjy/A2 +2 (G + R* +iy/G+R*——.— 7
> J}/ ,},( ) 7,( ) 1-2]G (37)
q;
3
J
Sy = 2, = Z, = 0)
with
3
<R R << 1
I % 2;G
R* = —4< (1-35 - ~ for
Fa-o(-47)
-1
L(’y_sz/R R >> 1

The negative sign within the square root in Equation (37) is related to acoustic-
gravity waves, the positive sign is related to heat conduction waves. The signs
outside the square root are again due to ascending and descending waves.

Approximate solutions of Equation (37) are

N f__. ) 3‘
q, +;VA +74-JR
2
&Ni for G, R << 1
_ 2;G
a, +j A2 + 222
) U y

21



>~< for G, R >> 1

38)
a FiYAT T 256G (

Equations (38) indicate as expected that for small Reynolds numbers (R << 1)
all wave modes including the acoustic-gravity mode are cvanescent waves be-
having like viscosity waves while for large Reynolds numbers (R >> 1) heat
conduction waves behave like viscosity waves but acoustic-gravity waves are
propagation waves for A < 1 (acoustic wave range) and are evanescent waves
(at vertical incidence) for A > 1 (gravity wave range).

VII. APPROXIMATE SOLUTIONS OF THE EIGENVALUE EQUATION
AT LARGE REYNOLDS NUMBERS (7 — 0)

An important approximation of the general eigenvalue Equation (17) can be
found if one makes the assumption
A
R >> (39)
. S2

In this case we again can split the determinant |K + A, E| into two nearly inde-
pendent determinants:

K+ X El ~ = 0 (40)

0 - Ky + N, E

22



We do this by multiplying the 5th and the 7th column of |K + X, E| with factors
h, and h,, respectively, and add both columns to the first column. We next
multiply the 5th and 7th column by

S0 5
7/h3and,yh4

and add both columns to the second column. Here it is

h, = (B,By + B,B; + jB,)/A

h, = (BB, - B,B, + jB,)/A

h, = (1- jBy)/A (41)
h, = jBy/A

A = 1-B.Bg - B,By - j(B, + By)

This procedure eliminates the R dependence of the off diagonal submatrices in
Equation (17), since & - 0 and

R$ 2
3y’

Their elements therefore become negligibly small compared with the elements
of the submatrix K, + A E if R goes to infinity. Thus the eigenvalues of the
viscosity waves can be determined from the determinant

K, + X El = 0

as

23



— R . . 1
>~ +J‘/A2 + 8¢ t5(B, + Bg) + jR + jRYBsBy - (B, - B;)?2

qy
8

The remaining determinant in Equation (40) has the form

hy Sg
Nothy 8- 2iA - (1-— | 1 0
4y (y-1
~y(1-hy) N, - hg S, 258 022D )
K, +, E| =
2jG
0 0 X, -5
2
S2
- 2jA -1 d2(1+§j—0> A T25A
with
hg j(Z, cos? T = B;h; - B,h,)

i (Byhy + Byhy)

It can be shown that the element

4 -1

4 & ) . 0.4

24 37 3

24
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(43)



which is the only direct contribution of R via the parameter § in this determinant
can entirely be neglected as long as

A >> K24.

This is in the gravity wave range.

The negligence of the term K,, in Equation (43) means that we treat the
system of Equations (2) without taking into account viscosity (» = 0). The
transformation of the determinant Equation (40) has then the effect of eliminating
the horizontal components of the velocity in the momentum Equations (2) which
are coupled via Coriolis force and (or) ion drag with the vertical component of
the velocity &w and with the pressure Ap. The terms h, and h¢ in Equation (43)
are now contributions of the vertical wind velocity and of the horizontal pressure
gradient. They are of the order { 1 and therefore small compared with A or
ENE

If we neglect in Equation (43) the element K,, and all terms which include
the difference h; - h,, the solution of Equation (43) becomes

qﬂ
2

h 2
-— 7 . 7 . .
b FiYAZ 52 -;nct‘/(h—z-m) +2jG(hg + SZBhy)

(44)
q3
4
W,
(m = 0;h;~hg ~ 0)
with
h, = S¢(1+hh)+ (L-hy) (y- SZhy) = jSyA(h, + hg)
2jS,A
hs - h7"()/‘1)(1"h5)+ d2 (h1+h6)
2
2
B2 - 4A = wg
d27 w?
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Again the upper sign within the square root is for acoustic-gravity waves, the
lower sign is for heat conduction waves.

For east-west propagation (A, = £90°) at the equator (J = 90°) itis h, = h
and Equation (44) is exact provided K24 = 0.

6’

For Z1 = Z'2 = 0 itis

h7 =y
hg = hy =1
h1:h2:h4:h5—'h6—0

Then Equation (44) becomes identical with Pitteway and Hines (1963) Equation (36).

From our assumption made in Equation (39) we should expect that the ap-
proximate Equation (44) breaks down for small values of R (and therefore of G).
Surprisingly enough we shall find from numerical calculations given in the next
section that Equation (44) is a reasonable approximation cven for

which is within the range of gravity waves as long as S, is not too large.

VIII. NUMERICAL SOLUTIONS OF THE EIGENVALUE EQUATION

Apart from some special analytical solutions which are given in the previous
sections, Equation (17) has to be treated by numerical methods. A convenient
program available in the SHARE Program Catalog is SAD 3099 (EIG 4) which
solves eigenvalues of complex matrices and is coded for the IBM 7090/94. This
program has been used for the following calculations.

The atmospheric model used is the Harris-Priester model 5 at 1200 local

time in 200 and 400 km height (CIRA, 1965). The parameters of this model to-
gether with additional numerical values are given in Table 1.
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Table I

Numerical Data Used in the Calculations of Eigenvalues

z(Km) wa(s—.l) w, (s7h) v(s H Q(s™H v f G (m/s) V(n's)

200 18.93x1073{1.09 1.x 1074 | 7.27x 1075 | 1.;

o]
[\]
(]

773.0 6.35

400 |6.51x1073{3.92x1072|1.%x 107417.27x 10751,

7]
Do
(3]

999.0 | 166.0

In each of the following figures the eigenvalues of the different wave modes
has been plotted versus the normalized horizontal wave number

l/k2+k2
s, = 'l—7Y

0 kO

The curve parameter is the angular frequency  (in sec™!). The left side of each
figure gives the real part o, of the eigenvalue. The right side gives its negative
imaginary part multiplied by k,: k,5,. We restrict ourselves to ascending
waves. The eigenvalues of descending waves are not very much different from
the eigenvalues of the equivalent ascending waves (apart of course from the sign).

Figures 2-5 show results of numerical claculations of the eigenvalue Equa-
tion (17) (full lines). For comparison the dashed lines have been calculated from
the approximate formula Equation (44) with the same numerical data. The propa-
gation conditions in these calculations are east to west propagation (A, = 90°) at
the equator (4 = 90°). In order to arrange that the various curves fit within one
figure, the ordinate of a; in Figures 2 and 6 has been divided into two different
scales — a linear one for o, > - 1, and a logarithmic one for o, < - 1.

From the definitions of magnitude and direction of phase velocity [Equations
(23) and (25)] it follows that the vector from the origin to a point of the dispersion
curves gives the ratio between velocity of sound to phase velocity and the direc-
tion of phase velocity. We observe in Figure 2 the well known downward directed
phase velocity of the ascending gravity waves (w < ) while their energy propa-
gation vector defined by Equations (24) and (26) is orthogonal to the dispersion
curves of a, (S;) and is directed upward.
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Acoustic waves (w > w_) with Reynolds numbers R 2 1 show a normal
behavior, but become evanescent waves at R < 107! as expected from Equa-
tion (38).

The intermittent frequency (v, ~ » = 1072 sec™!) shows acoustic wave
features at S; < 1 and gravity wave features at S, > 1 with a continuous transi-
tion region. From Figure 2 (attenuation factors k, B, ) it follows however that
the gravity wave range of this frequency is heavily attenuated.

From the definition of the attenuation factor [Equations (22) and (27)] we
can deduce that the wave amplitude of an upgoing wave remains constant if

This is the general behavior for gravity waves (v < ) and S§; < 10 in Figure 2.
The frequencyw = 1073 s”! has a minimum of attenuation at S, = 1.5, At this
frequency and horizontal wave number (k, ~ 2 x 1073 km™ 1) we expect therefore
especially good propagation conditions in this altitude range. The atmosphere
seems to behave like a frequency and height dependent selective filter with re-
spect to gravity waves.

Acoustic waves with frequencies » > 1 s™!
contribute to energy transport in this height.

are heavily damped and do not

The dashed lines in Figure 2 calculated from the approximate formula
Equation (44) indicate that this formula is a reasonable approximation within the
gravity wave range (A 2 1 or «, X w). It breaks down in the acoustic range.
There one expects from Equation (44) a phase velocity

for w - © while Equation (38) predicts v, - 0.

Figures 3 to 5 show real and imaginary part of eigenvalues of heat conduc-
tion wave, ordinary and extraordinary viscosity waves. All three wave modes
behave very similar in the whole frequency range. Heat conduction waves are
slightly less attenuated than viscosity waves
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For A > 1and S, > 10 real and imaginary part of the eigenvalues in
Figures 3 to 5 are of the same order of magnitude as the gravity waves (Flgure 2).
The sign of o, in Figures 3 to 5 is always positive at this height indicating that
energy and phase normal are equally directed.

Within the acoustic range (A < 1) all three wave modes in Figures 3 to 5 tend
to become heavily attenuated evanescent modes. ( k, 8, = 1 is equivalentto a
decrease in amplitude of 1/e after a vertical propagation path of 1 km.) Neither
mode ever shows an increase in amplitude with height.

The dashed lines in Figures 3 to 5 have been calculated from Equations (42)
and (44) and give evidence of the rather good approximation which these formulae
provide.

In order to check the validity of Equation (44) as compared with the exact
Equation (17) the calculations have been repeated in Figure 6 for gravity waves
using the parameters at a height of 400 km (see Table I) and the same propagation
conditions (A, = 90° & = 90°). We observe again a reasonably good agreement
between the exact solutions from Equation (17) (full lines) and the approximative
solution from Equation (44) (dashed lines) for the gravity wave range (A > 1).

This agreement breaks down for A > G or for very large S, values. A~ G
holds in about 500 km. Below this height the error arising from Equation (44)
seldom exceeds 50% in the gravity wave range. In view of the great simplifica-
tion given by Equation (44) as compared with the exact expression Equation (17)
this error seems to be of an allowed order. However the approximate decoupling
of the viscosity waves from the gravity and heat conduction waves greatly sim-
plifies any full wave treatment. It justifies for instance Harris' and Priester's
(1962) calculations in which the coefficient of viscosity has been neglected.

In order to investigate the influence of Coriolis force and ion drag we com-
pare in Figures 7 to 10 the real and imaginary part of eigenvalues of gravity
waves at 200 km for south to north propagation (A, = 180°) with east to west
propagation (A, = 90°) (dashed lines) at the equator (¢ = 90°) (Figures 7 and 8)
and at 45° northern latitude (3 = 45° (Figures 9 and 10). Moreover we compare
these dispersion curves with the eigenvalues of gravity waves where Coriolis
force and ion drag have been neglected (2, = Z, = 0) (full lines). Again the exact
expression Equation (17) (Figures 7 and 9) and the approximate solution Equa-
tion (44) (Figures 8 and 10) have been used.

From these figures we see that Coriolis force and ion drag makes the at-

mosphere anisotropical with respect to gravity waves. In Figure 7 the eigen-
values for 2, = Z, = 0 (full lines) are equal to the eigenvalues at south to north
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propagation (A, = 180°). Coriolis force and ion drag therefore only affect east
to west propagation (A = 90°) (dashed lines). The attenuation minimum at S, ~ 1
becomes deeper for south to north paths as compared with east to west paths
suggesting more favorable propagation conditions for south to north paths.

~ In these and all the following calculations it has been found that for west to
east propagation the eigenvalues do not differ more than 10% from the values of
east to west propagation. The same is true for north to south paths in relation
to south to north paths.

Figure 8 gives the same results as in Figure 7 but calculated from Equa-
tion (44) (n = 0). For comparison the circles are drawn from the full lines in
Figure 7 giving the exact calculation for Z, = Z, = 0. The dotted lines have
been calculated from the conditions Z, = 0, A, = 90° indicating small influence
of Coriolis force at the equator. From comparing Figures 7 and 8 we
again observe a rather good agreement between values calculated from Equa-
tions (17) and (44). We note that even special features of the single curves in
Figure 7 are truly reflected in Figure 8.

Finally Figtrixr'es' 9 and 10 give results at 45° northern latitude (8 = 45°).
Here we observe for the first time a remarkable difference between the results
from Equations (17) and (44). It arises for the case w = 1075 sec™ !, negligible
iondrag (Z, = 0) and S, > 6. Here the exact a,-curves (dotted curves) bend
toward zero and then become positive for increasing S, values. The equivalent
a, curve in Figure 10 (dotted curve) behaves in the normal manner and shows
no difference for A, = 180° and A, = 90°. It differs however appreciably from
the full curve (Z; = Z, = 0) giving evidence of the large influence of Coriolis
force on the propagation characteristics in medium latitudes. If we add ion drag
which in our calculations is of the same order of magnitude as the Coriolis force
we find the dashed curves in Figures 9 and 10. Here ion drag has the tendency
to reduce the influence of the Coriolis force.

At w = 1077 sec” ! the attenuation factor is larger in Figure 10 than in
Figure 9 for Z, = 0. Again ion drag reduces substantially this difference.
IX. CONCLUDING REMARKS

It has been shown that eight obliquely incident plane characteristic waves
can propagate through a horizontally stratified atmosphere, four of them
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ascending and the other four descending. The four pairs of characteristic waves
are the well known acoustic-gravity waves, the heat conduction waves and ordi-
nary and extraordinary viscosity waves. Heat conduction waves and viscosity
waves are named according to their relation to finite heat conductivity and finite
molecular viscosity.

Analytical solutions of the eigenvalue equation have been given which allow
one to identify the different characteristic waves.

Real and imaginary parts of the eigenvalues of the characteristic wave
modes have been calculated numerically. Through the use of these eigenvalues
the general behavior of the different wave modes has been discussed in detail.
The main results are the following:

a, Under the influence of heat conduction, viscosity and ion drag acoustic-
gravity waves become dissipative waves. Part of the wave energy is
transferred into internal energy of the surrounding gas. This energy
dissipation depends on angle of incidence, parameters of the atmosphere
and frequency. In the gravity wave range there exists an attenuation
minimum at a certain angle of incidence. The atmosphere therefore
behaves like a frequency and height dependent selective filter with re-
spect to gravity waves.

b. Under the influence of Coriolis force and ion drag the atmosphere be-
haves like an anisotropic medium. East to west propagation charac-
teristics of gravity waves differ from north to south propagation char-
acteristics. Ion drag tends to reduce the influence of the Coriolis force.

c. Within the gravity wave range and at altitudes below 500 km viscosity
waves are nearly uncoupled from gravity waves and heat conduction
waves. The coefficient of viscosity therefore can be neglected in the
treatment of gravity waves at thermospheric heights.

ACKNOWLEDGEMENT
I am very indebted to H. G. Mayr for valuable discussions. I would also like

to thank very much an anonymous referee for his detailed and important com-
ments.

40



REFERENCES

K. G. Budden, '"Radio waves in the ionosphere,' University Press, Cambridge,
1961.

S. Chapman and T. G. Cowling, "The mathematical treatment of non-uniform
gases,'' University Press, Cambridge, 1959.

CIRA, 1965, "COSPAR international reference atmosphere, 1965," North Holland
Publishing Company, Amsterdam, 1965.

C. Eckart, "Hydrodynamics of the oceans and the atmosphere,'" Pergamon Press,
Oxford, London, New York, 1960.

T. M. Georges, "HF -Doppler studies of traveling ionospheric disturbances,"
AGARD XIII Symposium of Phase and Frequency Instability in Electro-
magnetic Wave Propagation, Ankara, Turkey, October, 1967.

J. Harris and W. Priester, "Time dependent structure of the upper atmosphere,"
J. Atm. Sci. 19, (1962), 286-301.

C. O. Hines, "Internal gravity waves at ionospheric heights,'" Can. Journ. Phys.
38, (1960), 1441-1481.

J. E. Midgley and H. B. Liehmon, ""Gravity waves in a realistic atmosphere,"
Journ. Geophys. Res. 71, (1966), 3729-3748.

G. P. Newton, D. T. Pelz and H. Volland, '"Direct, in situ observations of wave
propagation in the neutral thermosphere,' submitted to J. Geophys. Res.,

1968.

M. L. V. Pitteway and C. O. Hines, "The viscous damping of atmospheric gravity
waves,' Can. Journ. Phys. 41, (1963), 1935-1948.

G. D. Thome, "Incoherent scatter observation of traveling ionospheric disturb-
ances," J. Geophys. Res. 69, (1964), 4047-4049.

H. Volland, "Heat conduction waves in the upper atmosphere," Journ. Geophys.
Res. 72, (1967), 2831-2841.

H. Volland, "Full wave calculations of thermospheric neutral air motions,"
submitted to Journ. Geophys. Res. (1968).

41



